
ANALYSIS AND COMPUTATION OF COMPATIBLE

LEAST-SQUARES METHODS FOR DIV-CURL EQUATIONS. ∗

PAVEL B. BOCHEV†, KARA PETERSON† , AND CHRISTOPHER M. SIEFERT‡

Abstract. We develop and analyze least-squares finite element methods for two complementary
div-curl elliptic boundary value problems. The first one prescribes the tangential component of the
vector field on the boundary and is solved using curl-conforming elements. The second problem
specifies the normal component of the vector field and is handled by div-conforming elements.

We prove that both least-squares formulations are norm-equivalent with respect to suitable dis-
crete norms, yield optimal asymptotic error estimates and give rise to algebraic systems that can
be solved by efficient algebraic multigrid methods. Numerical results that illustrate scalability of
iterative solvers and optimal rates of convergence are also included.
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1. Introduction. This paper deals with development, analysis and computation
of compatible least-squares finite element methods (LSFEMs) for two complementary
div-curl boundary value problems. The first problem is given by

{
∇× u = g in Ω

Θ−1
0 ∇ ·Θ1u = f in Ω

and n× u = 0 on Γ . (1.1)

LSFEM for (1.1) are developed using curl -conforming elements. The second div-curl
problem is given by

{
Θ−1

1 ∇×Θ2u = g in Ω

∇ · u = f in Ω
and n · u = 0 on Γ . (1.2)

Accordingly, LSFEM for (1.2) employ div -conforming elements. See [3,14,31,32] and
the references therein for more details about div and curl-conforming elements.

In (1.1)–(1.2) Ω is a bounded region in R
3 with Lipschitz-continuous boundary

Γ = ∂Ω, and g and f are given data. In what follows, Θ0 and Θ3 denote given
piecewise smooth scalar fields, and Θ1 and Θ2 are given piecewise smooth tensor
fields. We assume that Θi are non-degenerate in the sense that there are positive real
α0, α1, α2, and α3 such that for ξ ∈ R

3

1

αi

≤ Θi ≤ αi ; i = 0, 3 and
1

αi

ξTξ ≤ ξTΘiξ ≤ αiξ
Tξ ; i = 1, 2 . (1.3)

The boundary value problems (1.1)–(1.2) arise either on their own or as parts in more
complex mathematical models. A well-known example that has (1.1) as its prototype
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is the linear magnetostatics problem
{
∇×H = J0 in Ω

∇ · µH = 0 in Ω
and n×H = 0 on Γ (1.4)

in terms of the magnetic field intensity H. The complementary system (1.2) is pro-
totype of the same problem in terms of the dual magnetic flux density B:

{
∇× µ−1B = J0 in Ω

∇ ·B = 0 in Ω
and n ·B = 0 on Γ . (1.5)

In (1.4)–(1.5), J0 is a given function that specifies the imposed current density and µ

is the magnetic permeability.
Finite element solution of (1.1) and (1.2) is complicated by the fact that these

problems are elliptic in1 H0(Ω, curl) ∩ H(Ω, div) and H(Ω, curl) ∩ H0(Ω, div), re-
spectively. On the one hand, it is easy to see that a finite element subspace of
H(Ω, curl) ∩ H(Ω, div) contains piecewise smooth fields that are both tangentially
and normally continuous across the element interfaces and so, they are necessarily2

in [H1(Ω)]3; see [3, Lemma 5.1]. On the other hand, Costabell [17] has shown that
unless Ω has smooth boundary or is a convex polyhedron, H0(Ω, curl)∩ [H1(Ω)]3 and
H0(Ω, div) ∩ [H1(Ω)]3 are closed, infinite-codimensional subspaces of H0(Ω, curl) ∩
H(Ω, div) and H(Ω, curl) ∩ H0(Ω, div). As a result, on such domains standard C0

elements do not possess the approximability property; see [19, Corollary 3.20, p. 97].
Consequently, C0 elements are a poor choice for div-curl systems.

It should be noted that the complications caused by the H(Ω, curl) ∩H(Ω, div)
functional space setting are not limited to finite elements and have to be dealt with
in finite difference and finite volume methods as well. Successful methods for div-curl
systems resolve the issue of approximating H(Ω, curl) ∩ H(Ω, div) using one of the
following three strategies:

• Maintain div and curl conformity by using topologically dual grids. In this
approach, which is typical of finite volume methods [33–35], the curl and the
divergence are discretized on separate grids.
• Maintain div and curl conformity by using two sets of variables. Usually

this approach is implemented by transforming the div-curl system into a
constrained optimization problem with the L2 error between the two variables
serving as an objective functional. For instance, in magnetostatics this idea
gives rise to the so-called error-based [37] or field-based [2, 15] methods in
which the error in the constitutive equation B = µH is minimized subject to
∇×H = J0 and ∇ ·B = 0.
• Maintain div or curl conformity using a single variable and a single grid.

This approach is typical of mixed finite elements [10, 12] and mimetic finite
differences [27, 28] and requires approximation of either the curl or the div
operator. For example, a curl-conforming mimetic method for (1.1) uses the
so-called natural [27] curl operator and the adjoint or derived divergence
operator; see [26] for discussion of adjoint mimetic operators.

Each one of these three strategies has its advantages and disadvantages. Topo-
logical duality effectively restricts the first approach to Voronoi-Delaney or Cartesian

1See Section 2 for notation and definitions of various function spaces.
2In other words, conforming finite element approximations of H(Ω, curl) ∩ H(Ω, div) default to

standard C0 finite element spaces.
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grids [33, 35]. The second approach doubles the number of the dependent variables.
The derived operator in the third approach is usually not sparse and direct discretiza-
tion of the div-curl system by mimetic or mixed methods yields linear algebraic sys-
tems that are not easy to solve efficiently.

The main goal of this paper is to demonstrate that some, if not all, drawbacks
of the third approach can be mitigated, and all advantages retained, by switching to
properly formulated compatible least-squares minimization principles. Resulting LS-
FEMs for (1.1) and (1.2) are optimally accurate and, just like mimetic or mixed
methods, require a derived discrete operator. Thus, formally, least-squares alge-
braic systems involve a non-sparse matrix. However, we show that discrete norm-
equivalence of the least-squares functional leads to symmetric and positive definite
linear systems that can be solved efficiently by iterative multilevel methods developed
for curl-conforming discretizations of the Maxwell’s equations [7, 9]. Because such
methods require only application of the matrix, lack of sparsity bears no negative im-
pact on the practicality of LSFEMs for (1.1). This fact is confirmed by the numerical
results in Section 5 which demonstrate good convergence rates and solver scalability.

The rest of the paper is organized as follows. Section 2 reviews notation, basic
definitions and facts about the relevant function spaces, and their compatible finite el-
ement approximations. Section 3 introduces and analyzes the curl and div-conforming
discrete least-squares principles (DLSP) for (1.1)–(1.2). Implementation of the DLSPs
and multilevel solvers are considered in Section 4 and numerical results are presented
in Section 5.

2. Quotation of results and notation. Throughout the paper we employ
standard notation and definitions of various function spaces and operators. As usual,
L2(Ω) is the Hilbert space of all square integrable functions with inner product and
norm (·, ·)0 and ‖ · ‖0, respectively, and L2

0(Ω) is the subspace of L2(Ω) consisting of
functions with zero mean. Bold face denotes vector spaces, e.g., L2(Ω) = [L2(Ω)]3.
Formulation of dimensionally and unit consistent least-squares functionals requires
two sets of function spaces that account for the weights in (1.1) and (1.2). These
spaces are defined using the weighted L2 norms

‖u‖20,Θ = (Θu, u)0 = (u, u)0,Θ , (2.1)

and the associated weighted L2 spaces L2(Ω, Θ), where Θ is a piecewise smooth,
non-degenerate weight function. The first set consists of the spaces

H1
0 (Ω, Θ0) = {u ∈ L2(Ω, Θ0) | ∇u ∈ L2(Ω, Θ1); u = 0 on Γ}, (2.2)

H0(Ω, curl, Θ1) = {u ∈ L2(Ω, Θ1) | ∇ × u ∈ L2(Ω, Θ2); u× n = 0 on Γ}, (2.3)

H0(Ω, div, Θ2) = {u ∈ L2(Ω, Θ2) | ∇ · u ∈ L2
0(Ω, Θ3); u · n = 0 on Γ} , (2.4)

equipped with the graph norms

‖u‖2G = ‖u‖20,Θ0
+ ‖∇u‖20,Θ1

‖u‖2C = ‖u‖20,Θ1
+ ‖∇ × u‖20,Θ2

,

and ‖u‖2D = ‖u‖20,Θ2
+ ‖∇ · u‖20,Θ3

,
(2.5)

respectively, and the space L2
0(Ω, Θ3). The second set is defined by making the sub-

stitutions Θ0 → Θ−1
3 ; Θ1 → Θ−1

2 , Θ2 → Θ−1
1 , and Θ3 → Θ−1

0 in (2.2)–(2.5).
To denote the versions of (2.2)–(2.4) without the boundary conditions imposed

we drop the subscript 0 from the space designation.



4 BOCHEV, PETERSON and SIEFERT

Remark 1. For unit weights the so defined function spaces coincide with the stan-
dard definitions of H1

0 (Ω), H0(Ω, curl), H0(Ω, div) and L2
0(Ω), respectively. Moreover,

because all weights are assumed non-degenerate, norms in (2.1) and (2.5) are equiva-
lent to the standard norms, and basic inequalities valid for the standard spaces extend
to (2.2)–(2.4), possibly with a different constant.

The space Ht(Θ1) = H0(Ω, curl, Θ1) ∩H(Ω, div, Θ−1
1 ), endowed with norm

‖u‖2Ht(Θ1)
= ‖u‖20,Θ1

+ ‖∇× u‖20,Θ2
+ ‖∇ ·Θ1u‖

2
0,Θ−1

0

. (2.6)

provides the functional setting for (1.1). Likewise, Hn(Θ2) = H(Ω, curl, Θ−1
2 ) ∩

H(Ω, div, Θ2) with norm

‖u‖2Hn(Θ2) = ‖u‖20,Θ2
+ ‖∇×Θ2u‖

2
0,Θ−1

1

+ ‖∇ · u‖20,Θ3
. (2.7)

provides the setting for (1.2). We recall the Poincaré–Friedrichs inequality

‖u‖0 ≤ CP

(
‖∇ × u‖0 + ‖∇ · u‖0

)
, (2.8)

that holds for all u ∈ H0(Ω, curl)∩H(Ω, div) and u ∈ H(Ω, curl)∩H0(Ω, div). From
(2.8) and Remark 1 it follows that

‖u‖Ht(Θ1) ≤ C
(
‖∇× u‖0,Θ2

+ ‖∇ ·Θ1u‖0,Θ−1

0

)
, (2.9)

for all u ∈ Ht(Θ1), and

‖u‖Hn(Θ2) ≤ C
(
‖∇×Θ2u‖0,Θ−1

1

+ ‖∇ · u‖0,Θ3

)
, (2.10)

for all u ∈ Hn(Θ2). Consequently, the right hand sides in (2.9) and (2.10) define
equivalent norms on Ht(Θ1) and Hn(Θ2), denoted by ‖ · ‖t and ‖ · ‖n, respectively.

Throughout the paper we assume that Ω is a bounded contractible region and so,
the DeRham complex

R →֒ H1
0 (Ω)

∇
−→ H0(Ω, curl)

∇×
−→ H0(Ω, div)

∇·
−→ L2

0(Ω) −→ 0 , (2.11)

and its weighted space analogues are exact; see [3].
We formulate compatible LSFEMs for the div-curl system (1.1) using spaces from

a finite element DeRham complex that approximates (2.11). Such a complex is com-
prised of conforming finite element subspaces Gh

0 (Ω) ⊂ H1
0 (Ω), Ch

0 (Ω) ⊂ H0(Ω, curl),
Dh

0 (Ω) ⊂ H0(Ω, div) and Sh
0 (Ω) ⊂ L2

0(Ω) that form an exact sequence, and bounded
projection operators ΠG : H1

0 (Ω) 7→ Gh
0 (Ω), ΠC : H0(Ω, curl) 7→ Ch

0 (Ω), ΠD :
H0(Ω, div) 7→ Dh

0 (Ω), and ΠS : L2
0(Ω) 7→ Sh

0 (Ω) such that the diagrams

H1
0 (Ω)

∇
−→ H0(Ω, curl)

∇×
−→ H0(Ω, div)

∇·
−→ L2

0(Ω)

ΠG ↓ ΠC ↓ ΠD ↓ ΠS ↓

Gh
0 (Ω)

∇
−→ Ch

0 (Ω)
∇×
−→ Dh

0 (Ω)
∇·
−→ Sh

0 (Ω)

(2.12)

commute. The standard L2(Ω) projections onto compatible finite element spaces are
denoted by πG, πC , πD and πS .

For simplicity, we restrict attention to partitions Th of Ω into affine simplicial
elements κ because construction of the requisite finite element spaces in this case
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is fairly straightforward [3, 16]. This assumption obviates the need to account for
technical details that are unimportant for the development of the LSFEMs.

In this case, Gh
0 (Ω) is the familiar C0 piecewise polynomial space and Sh

0 (Ω) is a
discontinuous piecewise polynomial space. Henceforth these are denoted by Gr

0(Ω) and
Sr

0(Ω), respectively, where r ≥ 1 is the polynomial degree. There are more choices for
Ch

0 (Ω) and Dh
0 (Ω) but here we restrict attention to curl and div conforming elements

of the first and the second kinds; see [31, 32]. The former are denoted by Cr
0 (Ω)

and Dr
0 (Ω), respectively, whereas Cr

0(Ω) and Dr
0(Ω) stand for elements of the second

kind. In both cases r ≥ 1 is an integer related to the polynomial degree used to define
the spaces.

Although approximation properties of these spaces are well-known [3,13,14,31,32]
we review them for completeness. Below Πr

X and πr
X stand for bounded and L2

projection operators onto the respective finite element spaces, indexed by an integer
r ≥ 1. First we have that for every u ∈ Hr+1(Ω),

‖u−Πr
Gu‖0

‖u− πr
Gu‖0

‖u− πr
Su‖0





≤ Chr+1‖u‖r+1 and ‖∇(u−Πr

Gu)‖0 ≤ Chr‖∇u‖r . (2.13)

Furthermore, given a vector field u ∈ Hr+1(Ω),

‖u−Πr
Cu‖0

‖u− πr
Cu‖0

}
≤ C

{
hr‖u‖r if Ch(Ω) = Cr (Ω)

hr+1‖u‖r+1 if Ch(Ω) = Cr(Ω)

‖∇× (u−Πr
Cu)‖0 ≤ Chr‖∇× u‖r ,

(2.14)

and

‖u−Πr
Du‖0

‖u− πr
Du‖0

}
≤ C

{
hr‖u‖r if Dh(Ω) = Dr (Ω)

hr+1‖u‖r+1 if Dh(Ω) = Dr(Ω)

‖∇ · (u−Πr
Du)‖0 ≤ Chr‖∇ · u‖r .

(2.15)

Compatible LSFEMs require discrete approximations of curl and div acting on
Dh

0 (Ω) and Ch
0 (Ω), respectively. The operator ∇∗

h× : Dh
0 (Ω) 7→ Ch

0 (Ω) is defined by

(
∇∗

h×vh,uh
)
0,Θ1

=
(
vh,∇×uh

)
0,Θ2

−

∫

Γ

(n×Θ2v
h) · uh dΓ ∀uh ∈ Ch

0 (Ω) . (2.16)

The discrete divergence ∇∗
h· : C

h
0 (Ω) 7→ Gh

0 (Ω) is given by

(
∇∗

h · u
h, qh

)
0,Θ0

=
(
uh,−∇qh

)
0,Θ1

+

∫

Γ

(n ·Θ1u
h)q dΓ ∀ qh ∈ Gh

0 (Ω) . (2.17)

In what follows we assume that finite element spaces entering definitions (2.16)
and (2.17) belong to the same finite element DeRham complex. This assumption has
two important consequences. First; see [6, Theorem B.25, p.580], one can show that

there is a constant C̃P , independent of h, such that

‖uh‖0,Θ1
≤ C̃P

(
‖∇× uh‖0,Θ2

+ ‖∇∗
h · u

h‖0,Θ0

)
∀uh ∈ Ch

0 (Ω) (2.18)

and

‖uh‖0,Θ2
≤ C̃P

(
‖∇∗

h × uh‖0,Θ1
+ ‖∇ · uh‖0,Θ3

)
∀uh ∈ Dh

0 (Ω) , (2.19)
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i.e., discrete versions of Poincaré–Friedrichs inequalities (2.9)–(2.10) hold on Ch
0 (Ω)

and Dh
0 (Ω). Second, functions in Ch

0 (Ω) and Dh
0 (Ω) admit discrete Hodge decompo-

sitions that can be expressed in terms of (2.16) and (2.17) in a way that mimics the
true Hodge decomposition of vector fields. For the sake of completeness we include
the full statement of the relevant results.

Theorem 2.1 ( [6, Theorem B.22, p.577] ). Let Nh
0 (∇×) and Nh

0 (∇×)⊥ de-
note the null-space of curl in Ch

0 (Ω) and its orthogonal complement in that space,
respectively. Every uh ∈ Ch

0 (Ω) can be written as

uh = uh
N + uh

N⊥ with uh
N ∈ Nh

0 (∇×) and uh
N⊥ ∈ Nh

0 (∇×)⊥ , (2.20)

where ∇∗
h ·u

h
N⊥ = 0, uh

N⊥ = ∇∗
h×wh for some wh ∈ Dh

0 (Ω), and uh
N = ∇ph for some

ph ∈ Gh
0 (Ω). Furthermore, there is a positive constant C, independent of h, such that

‖uh
N⊥‖0 ≤ C‖∇× uh‖0 ,

‖uh
N‖0 ≤ C‖∇∗

h · u
h‖0 , and ‖uh

N‖0 ≤ C‖uh‖0 .
(2.21)

The result for div-conforming spaces is similar.
Theorem 2.2 ( [6, Theorem B.23, p.578] ). Let Nh

0 (∇·) and Nh
0 (∇·)⊥ denote the

null-space of div in Dh
0 (Ω) and its orthogonal complement in that space, respectively.

Every uh ∈ Dh
0 (Ω) can be written as

uh = uh
N + uh

N⊥ with uh
N ∈ Nh

0 (∇·) and uh
N⊥ ∈ Nh

0 (∇·)⊥ , (2.22)

where ∇∗
h × uh

N⊥ = 0, uh
N⊥ = ∇∗

hph for some ph ∈ Sh
0 (Ω), and uh

N = ∇ ×wh, and
wh ∈ Ch

0 (Ω) is such that ∇∗
h · w = 0. Furthermore, there exists a positive constant

C, independent of h, such that

‖uh
N⊥‖0 ≤ C‖∇ · uh‖0 ,

‖uh
N‖0 ≤ C‖∇∗

h × uh‖0 , and ‖uh
N‖0 ≤ C‖uh‖0 .

(2.23)

Finally, we note that the action of ∇∗
h×, and ∇∗

h· can be extended to H(Ω, div)
and H(Ω, curl). In this case it is easy to see that for sufficiently smooth u

∇∗
h × u = πC(∇× u) and ∇∗

h · u = πG(∇ · u) . (2.24)

3. Discrete least-squares principles for div-curl systems. Using (2.9) it
is straightforward to show; see [6, Section 3.2], that the least-squares principle






min
u∈Ht(Θ1)

Jt(u;g, f)

Jt(u;g, f) = ‖∇× u− g‖20,Θ2
+ ‖∇ ·Θ1u− f‖2

0,Θ−1

0

(3.1)

has a unique minimizer which solves (1.1). Likewise, from (2.10) easily follows that





min
u∈Hn(Θ2)

Jn(u;g, f)

Jn(u;g, f) = ‖∇×Θ2u− g‖2
0,Θ−1

1

+ ‖∇ · u− f‖20,Θ3

(3.2)

has a unique minimizer that solves (1.2). Formally, by restricting minimization in
(3.1) and (3.2) to conforming subspaces Hh

t ⊂ Ht(Θ1) and Hh
n ⊂ Hn(Θ2) one obtains

a well-posed LSFEM; see [6, Theorem 3.28, p.92].
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Unfortunately, as we have already explained in Section 1, conforming finite ele-
ment subspaces of H0(Ω, curl) ∩ H(Ω, div), H(Ω, curl) ∩ H0(Ω, div) and, of course,
of Ht(Θ1) and Hn(Θ2), default to C0 finite elements. Consequently, notwithstanding
their well-posedness, conforming discretizations of (3.1)–(3.2) are not very useful. To
resolve this problem, we propose to abandon “fully” conforming approximations of
Ht(Θ1) and Hn(Θ2) in favor of “partially” conforming finite element subspaces that
are natural for the boundary conditions in the div-curl systems.

Specifically, we approximate Ht(Θ1) by the curl-conforming space Ch
0 (Ω) and

Hn(Θ2) - by the div-conforming space Dh
0 (Ω). Of course, this means that in (3.1)

divergence has to be replaced by the discrete operator defined in (2.17), so that the
“partially” conforming discretization of (3.1) is given by





min
uh∈Ch

0
(Ω)

Jh
t (uh;g, f)

Jh
t (uh;g, f) = ‖∇× uh − g‖20,Θ2

+ ‖∇∗
h · u

h − f‖20,Θ0
.

(3.3)

A “partially” conforming discretization of (3.2) uses the operator in (2.16):





min
uh∈Dh

0
(Ω)

Jh
n (uh;g, f)

Jh
n (uh;g, f) = ‖∇∗

h × uh − g‖20,Θ1
+ ‖∇ · uh − f‖20,Θ3

.

(3.4)

Remark 2. Because (3.3) and (3.4) use discrete operators, their formulation
requires two finite element spaces: a minimization space where the least-squares min-
imizer is sought, and an auxiliary space to define the discrete operator. For (3.3) this
pair is given by {Ch

0(Ω), Gh
0 (Ω)} and for (3.4) - by {Dh

0 (Ω),Ch
0 (Ω)}.

3.1. Stability of discrete least-squares formulations. Because (3.3) and
(3.4) use non-conforming approximations of Ht(Θ1) and Hn(Θ2) their stability cannot
be inferred from (2.9) and (2.10). Instead, we use properties of compatible finite
element spaces to establish this fact directly. To this end, define the discrete norms

‖uh‖2
Hh

t

= ‖uh‖20,Θ1
+ ‖∇× uh‖20,Θ2

+ ‖∇∗
h · u

h‖20,Θ0
∀uh ∈ Ch

0 (Ω) , (3.5)

and

‖uh‖2Hh
n

= ‖uh‖20,Θ2
+ ‖∇∗

h × uh‖20,Θ1
+ ‖∇ · uh‖20,Θ3

∀uh ∈ Dh
0 (Ω) . (3.6)

We have the following equivalence result.
Theorem 3.1. There exists a positive constant C, independent of h, such that

C‖uh‖Hh

t

≤ ‖∇× uh‖20,Θ2
+ ‖∇∗

h · u
h‖20,Θ0

∀uh ∈ Ch
0 (Ω) (3.7)

and

C‖uh‖2Hh
n

≤ ‖∇∗
h × uh‖20,Θ1

+ ‖∇ · uh‖20,Θ3
∀uh ∈ Dh

0 (Ω) . (3.8)

Proof. Follows directly from the discrete Poincaré inequalities (2.18)–(2.19).

Theorem 3.1 implies that Jh
t (uh; 0, 0) and Jh

n (uh; 0, 0) define norms that are equiv-
alent to ‖ · ‖Hh

t

and ‖ · ‖Hh
n
, respectively. This fact is sufficient to guarantee that (3.3)

and (3.4) have unique minimizers; see [6, Theorem 3.17, p.82].
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3.2. Error analysis. This section establishes asymptotic error estimates for the
solutions of (3.3) and (3.4). We restrict attention to the case when f = 0 in (1.1) and
(1.2) because this is of most interest in practical applications. The assumptions that
Th is a regular partition of Ω into affine simplicial elements and that (2.17)–(2.16)
are defined using spaces from the same finite element DeRham complex remain in full
force. We begin with the curl-conforming LSFEM (3.3).

Theorem 3.2. Assume that Ω ⊂ R
3 is a bounded, contractible domain with

Lipschitz continuous boundary and u ∈ Ht(Θ1) is a solution of (1.1) with f = 0. Let
uh ∈ Ch

0 (Ω) denote the minimizer of the LSFEM (3.3). Then,




‖∇× (u− uh)‖0 ≤ inf

vh∈Ch

0
(Ω)
‖∇× (u− vh)‖0

‖∇ · u−∇∗
h · u

h‖0 ≤ ‖∇ · u− πG(∇ · u)‖0 ,
(3.9)

where πG is the L2 projection onto the space Gh
0 (Ω) entering definition (2.17).

Proof. For clarity we set all weights to one. The Euler-Lagrange equation for
(3.3) is given by the weak problem: seek uh ∈ Ch

0 (Ω) such that
(
∇× uh,∇× vh

)
+

(
∇∗

h · u
h,∇∗

h · v
h
)

=
(
g,∇× vh

)
∀vh ∈ Ch

0 (Ω) . (3.10)

From Theorem 2.1, vh = vN + vN⊥ , where ∇× vN = 0 and ∇∗
h · vN⊥ = 0. Because

∇× vh = ∇× vN⊥ and ∇∗
h · v

h = ∇∗
h · vN it is easy to see that (3.10) splits into two

independent equations:
{ (
∇× uh,∇× vh

)
=

(
g,∇× vh

)
(
∇∗

h · u
h,∇∗

h · v
h
)

= 0
∀vh ∈ Ch

0 (Ω) . (3.11)

Solution of (1.1) satisfies ∇× u = g and ∇ · u = 0 and so,
{ (
∇× uh −∇× u,∇× vh

)
= 0

(
∇∗

h · u
h −∇ · u,∇∗

h · v
h
)

= 0
∀vh ∈ Ch

0 (Ω) . (3.12)

From the first equation in (3.12) it follows, in the usual manner, that

‖∇× uh −∇× u‖0 ≤ ‖∇× vh −∇× u‖0

for all vh ∈ Ch
0 (Ω). Therefore,

‖∇ × uh −∇× u‖0 ≤ inf
vh∈Ch

0
(Ω)
‖∇× vh −∇× u‖0 .

From the second equation in (3.12) we obtain the inequality

‖∇∗
h · u

h −∇ · u‖0 ≤ ‖∇
∗
h · u−∇ · u‖0 ,

which, in conjunction with the second identity in (2.24), yields the error bound

‖∇∗
h · u

h −∇ · u‖0 ≤ ‖πG(∇ · u)−∇ · u‖0 .

This completes the proof of the theorem.

Corollary 3.3. Let r ≥ 1 be an integer. Assume that LSFEM (3.3) is defined
using either {Cr

0(Ω), Gr+1
0 (Ω)} or {Cr

0 (Ω), Gr
0(Ω)} (see Remark 2), and that u ∈

H0(Ω, curl) ∩Hr+1(Ω). Then,

‖∇× (u− uh)‖0 + ‖∇ · u−∇∗
h · u

h‖0 ≤ Chr
(
‖∇× u‖r + ‖∇ · u‖r

)
. (3.13)
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If (3.3) is defined using the first pair and u ∈ H0(Ω, curl) ∩ Hr+3(Ω) or (3.3) is
defined using the second pair and u ∈ H0(Ω, curl)∩Hr+2(Ω), divergence error can be
improved to

‖∇ · u−∇∗
h · u

h‖0 ≤ C

{
hr+2‖∇ · u‖r+2 if Gh

0 (Ω) = Gr+1
0 (Ω)

hr+1‖∇ · u‖r+1 if Gh
0 (Ω) = Gr

0(Ω) .
(3.14)

Proof. Theorem 3.2 requires that the pairs used to define (3.3) come from the
same finite element DeRham complex. Both {Cr

0(Ω), Gr+1
0 (Ω)} and {Cr

0 (Ω), Gr
0(Ω)}

satisfy this condition; see [3], and so, error bound (3.9) holds for uh and u. If u ∈
H0(Ω, curl) ∩Hr+1(Ω), then from (2.14) it follows that

inf
vh∈Ch

0
(Ω)
‖∇ × (u− vh)‖0 ≤ Chr‖∇× u‖r,

for both choices of the minimization space Ch
0 (Ω), whereas (2.13) implies that

‖∇ · u− πG(∇ · u)‖0 ≤ Chr‖∇ · u‖r,

for both choices of the auxiliary space Gh
0 (Ω). This proves (3.13). When u has the

additional regularity stipulated in the statement of the corollary, the order of the
curl approximation does not improve because it is already the best possible order for
Cr

0(Ω) and Cr
0 (Ω). However, the order of the divergence approximation does increase

according to (2.13).

The analysis of (3.4) follows along the same lines.
Theorem 3.4. Assume that Ω ⊂ R

3 is a bounded, contractible domain with
Lipschitz continuous boundary and u ∈ Hn(Θ2) is a solution of (1.2) with f = 0. Let
uh ∈ Dh

0 (Ω) denote the minimizer of the LSFEM (3.4). Then,

‖∇ · (u− uh)‖0 ≤ inf
vh∈Dh

0
(Ω)
‖∇ · (u− vh)‖0

‖∇× u−∇∗
h × uh‖0 ≤ ‖∇× u− πC(∇× u)‖0 ,

(3.15)

where πC is the L2 projection onto the space Ch
0 (Ω) entering definition (2.16).

Proof. The proof is very similar to the proof of Theorem 3.2 but uses the Hodge
decomposition for Dh

0 (Ω) given in Theorem 2.2.

Similar to Theorem 3.2, the proof of Theorem 3.4 also relies on the assumption
that the spaces in {Dh

0(Ω),Ch
0 (Ω)} are from the same finite element DeRham complex.

However, the number of pairs {Dh
0(Ω),Ch

0 (Ω)} that fulfill this condition is greater
than the number of pairs for (3.3), because there are two distinct families of div and
curl-conforming elements. We refer to [3] for demonstration that the pairs

Dr
0 (Ω)×

{
Cr

0 (Ω) (I)

Cr
0(Ω) (II)

Dr
0(Ω)×

{
C

(r+1)
0 (Ω) (III)

Cr+1
0 (Ω) (IV) .

(3.16)

satisfy the above assumption. For sufficiently smooth solutions of (1.2), we have an
analogue of Corollary 3.3.

Corollary 3.5. Let r ≥ 1 be an integer. Assume that LSFEM (3.3) is defined
using one of the pairs in (3.16) and that u ∈ H0(Ω, div) ∩Hr+1(Ω). Then,

‖∇ · (u− uh)‖0 + ‖∇× u−∇∗
h × uh‖0 ≤ Chr

(
‖∇ · u‖r + ‖∇× u‖r

)
. (3.17)
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If (3.4) is defined using (II) or (III) and u ∈ H0(Ω, div)∩Hr+2(Ω) or (3.4) is defined
using (IV) and u ∈ H0(Ω, div) ∩ Hr+3(Ω), the error estimate for the curl can be
improved to

‖∇× u−∇∗
h × uh‖0 ≤ C

{
hr+1‖∇× u‖r+1 for (II) and (III)

hr+2‖∇× u‖r+2 for (IV) .
(3.18)

Proof. Using the error bound (3.15) in conjunction with (2.15) gives

inf
vh∈Dh

0
(Ω)
‖∇ · (u− vh)‖0 ≤ Chr‖∇ · u‖r

for all minimization spaces Dh
0 (Ω) in (3.16). Likewise, (3.15) and (2.15) imply

‖∇× u− πC(∇× u)‖0 ≤ Chr‖∇ × u‖r

for all auxiliary spaces Ch
0 (Ω) in (3.16). This proves the first assertion of the corollary.

Assuming that u has the additional regularity stipulated in the statement of the
corollary, application of (2.14) to ∇× u gives the upper bound

‖∇×u−πC(∇×uh)‖0 ≤ C





hr+1‖∇ × u‖r+1 if Ch

0 (Ω) = Cr
0(Ω) or C

(r+1)
0 (Ω)

hr+2‖∇ × u‖r+2 if Ch
0 (Ω) = Cr+1

0 (Ω) .

This establishes the second part of the corollary.
Remark 3. The bulk of the results in Sections 3.1 and 3.2 can be extended

to hexahedral elements as long as they are affine (parallelepipeds) or nearly affine.
The reason for this restriction is that properties of div and curl-conforming elements
deteriorate on non-affine hexahedral elements. For example, Falk et al. [20] show that
the lowest-order div-conforming Raviart-Thomas space on general hexahedral elements
does not contain constants, and so, convergence may be completely lost. The situation
with the lowest-order curl-conforming Nédelec space of the first kind is somewhat better
because this space does contain constant vector fields. As a result, convergence in L2

for this space remains O(h) on both affine and non-affine hexahedral elements; see [20].
Unfortunately, this property does not extend to the curl of the lowest-order Nédelec
space which does not contain constants. Consequently, the approximation of ∇ × u

is suboptimal. Numerical results in Section 5.1 compare and contrast convergence
of LSFEMs on affine and non-affine hexahedral elements. For further details and
possible workarounds we refer to [20] and the references therein.

4. Implementation and solution of algebraic systems.

4.1. Discrete System. The LSFEMs (3.3) and (3.4) defined in Section 3 re-
quire discrete divergence and curl operators that, in general, are represented by dense
matrices. Thus, formally, the least-squares linear algebraic systems involve dense
symmetric matrices. On the other hand, discrete norm-equivalence of the associated
least-squares functionals, established by Theorem 3.1, implies that these matrices are
also positive definite. This valuable computational property enables efficient itera-
tive solution of least-squares linear systems and means that the matrices need not be
fully assembled. This observation is key to efficient implementation and solution of
least-squares linear systems.
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For clarity we present the details for (3.3) and (3.4) implemented using the lowest-
order finite element DeRham complex on tetrahedral3 and hexahedral elements. In
this case Gh

0 (Ω) = G1
0(Ω) is a C0 piecewise linear (trilinear) space, Ch

0 (Ω) = C1
0 (Ω)

is the lowest-order Nédelec edge element of the first-kind [31], Dh
0 (Ω) = D1

0 (Ω) is
the lowest-order Raviart-Thomas [36] face element and Sh

0 (Ω) is a piecewise constant
space. We remind (see Remark 3) that on hexahedral elements the optimal error
estimates from Section 3.2 are valid only when the elements are affine or nearly affine.

To define the linear systems some additional notation is needed. For simplicity
we set all weights to one. Let {gi}, {c

h
i }, {d

h
i }, and {si} denote standard bases for

Gh
0 (Ω), Ch

0 (Ω), Dh
0 (Ω), and Sh

0 (Ω), respectively, and define

(MC)ij =

∫

Ω

ci · cj dΩ , (KC)ij =

∫

Ω

(∇× ci) · (∇× cj) dΩ ,

(MD)ij =

∫

Ω

di · dj dΩ , (KD)ij =

∫

Ω

(∇ · di)(∇ · dj) dΩ ,

(MG)ij =

∫

Ω

gigj dΩ (MS)ij =

∫

Ω

sisj dΩ .

(4.1)

Finally, let Dk denote the incidence matrix4 between the k− and k + 1-dimensional
facets of the mesh Th.

Consider first the curl-conforming LSFEM (3.3). In the usual manner we see that
the Euler-Lagrange equation (3.10) for this LSFEM corresponds to a linear system
with matrix

KCD∗ = KC + KD∗ , (4.2)

where KC is curl–curl matrix defined in (4.1) and KD∗ is a div–div matrix correspond-
ing to the discrete divergence operator (2.17). In [7,8] it is shown that KC = D

T
1 MDD1,

KD∗ = MCD0M
−1
G D

T
0 MC , and

KCD∗ = D
T

1 MDD1 + MCD0M
−1
G D

T

0 MC = MCLC (4.3)

where LC is the discrete Hodge Laplacian acting on curl-conforming elements Ch
0 (Ω);

see [6, p.575]. Multilevel methods for the solution of LC are developed in [7]. We use
these methods to solve the linear systems engendered by (3.3).

The div-conforming LSFEM (3.4) leads to similar linear systems. The Euler-
Lagrange equation for this LSFEM corresponds to an algebraic problem with matrix

KC∗D = KC∗ + KD , (4.4)

where KD is “div-div” matrix defined in (4.1) and KC∗ is a curl–curl matrix corre-
sponding to the discrete curl operator (2.17). Also in [7, 8] it is shown that KC∗ =
MDD1M

−1
C D

T
1 MD, KD = D

T
2 MSD2, and

KC∗D = MDD1M
−1
C D

T

1 MD + D
T

2 MSD2 = MDLD , (4.5)

where LD is discrete Hodge Laplacian acting on Dh
0 (Ω). Multilevel methods for LD

are developed in [9]. We use these methods for the linear systems engendered by (3.4).

3These finite element spaces are also known as Whitney elements [11].
4For instance, D0 is the node to edge incidence matrix.
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Remark 4. The positive definiteness of (4.2) and (4.4) follows from (3.7) and
(3.8), respectively. It turns out that these matrices possess an even stronger property,
namely, one can show that the size of their kernels equals the size of the kernel of the
analytic Hodge Laplacian; see [7, Theorem 3.1]. This is key to formulation of efficient
multilevel solvers for discrete Hodge Laplacians in [7,9].

Note that discrete divergence and curl operators lead to the appearance of an
inverse mass matrix as one of the factors in KCD∗ and KC∗D. Formally, this means
that KCD∗ and KC∗D are dense which makes their assembly and storage impossible
for all but very small problems.

However, in practice, we do not have to use consistent mass matrices. In the
lowest-order case, it suffices to replace MG and MC by diagonal lumped-mass versions
M̃G and M̃C , respectively, as long as the latter are O(h) approximations of the con-
sistent mass matrices. This does not destroy the accuracy of LSFEMs and leads to
modified linear systems for which K̃CD∗ and K̃C∗D are replaced by

K̃CD∗ = D
T

1 MDD1 + MCD0M̃
−1
G D

T

0 MC

and

K̃C∗D = MDD1M̃
−1
C D

T

1 MD + D
T

2 MSD2 ,

respectively. The modified matrices have the usual sparse structure and their assembly
and storage do not pose any problems. Moreover, the analyses in [7,9] include inexact
mass matrices so that the algebraic preconditioners from these papers can be applied
to solve the modified systems.5

4.2. Algebraic multigrid for least-squares systems. Our algebraic multi-
grid (AMG) approach is derived from the earlier work in [7, 9]. Likewise, we adopt
their central insight — transform a challenging problem into a well-understood one.
In this case we desire to transform our conformal least-squares system on edges or
faces into a coarse nodal Laplace problem, as textbook multigrid methods are very
effective for nodal Laplacians. We follow a modified smoothed aggregation approach
to generate our coarse problem. Smoothed aggregation is a widely available AMG
method for second order elliptic systems and is described in [42, 43].

For the curl-conforming case, we note that K̃CD∗ is equal to the (1,1) block term in
(5.2) of [7], once the isolated mass matrix, MC in our notation, is removed. Because
this mass matrix is absent, we do not need to consider block preconditioners and
hybrid smoothers which are used in the eddy current case [7, 24].

We can simply apply a coarsening algorithm similar to that which [7] propose for
the (1,1) block. It is trivial to verify that near-nullspace is identical to (4.12) of [7],
which means that we can use the prolongator shown in Algorithm 1 of [7] as is. This
now allows us to form a coarse Laplace-like system to which a standard nodal AMG
technique can be applied.

For the div-conforming case, K̃C∗D is equal to the (1,1) block term in (3.6) of [9]
once the isolated mass matrix, MD in our notation, is removed. Again, no block

5An alternative approach that can be used in more general settings for higher-order elements is
to implement iterative solvers in an assembly-free manner. In this case, we only need the action of
KCD∗ and KC∗D and not the matrices themselves. Computing the action of these matrices requires
the inversion of M

−1

G
and M

−1

C
that can be done using an internal conjugate gradient loop. Because

M
−1

G
and M

−1

C
are well-conditioned and we do not need their inverses computed to machine precision,

this requires only a few conjugate gradient iterations.
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preconditioning or hybrid smoothing is required. Rather than explicitly form a near-
nullspace from vectors, we follow Algorithm 1 of [9] by using the Πdiv

h operator as
in [4, 25] to interpolate a standard nodal prolongator to the faces.

In both cases, we omit prolongator smoothing on this level in order to minimize
the operator complexity of the resulting preconditioner. It is well known that mesh
independent convergence can be achieved when prolongator smoothing is omitted in
two-level domain decomposition methods (see [29, 30, 39–41]). Thus it is reasonable
to expect a similar result in this case.

4.2.1. Matrix-light smoothing. Unlike the eddy current case, which is the
focus of [7], we can not omit the smoothing on either the K̃CD∗ or K̃C∗D systems.
These systems are on the finest level and thus smoothing is a necessity. We would
also prefer to avoid explicitly forming the second term of K̃CD∗ (or the first term of

K̃C∗D), since even with the lumped-mass versions M̃G and M̃C , respectively, these
terms still have a very large stencil. This means that the necessary matrix-matrix
multiplies would be expensive in both memory use and time.

We propose the use of Chebyshev relaxation methods for the finest level smoothers
in both cases [38, Algorithm 12.1]. These methods are effective at smoothing on single
CPU machines and scale very well in parallel [1]. More importantly, they can be
implemented in a fashion that requires two operations with the matrix — a matrix-
vector product and the application of the inverse of the matrix diagonal (or some
approximation thereof) for preconditioning. Our goal is to use our explicitly stored
component matrices without forming the overall system. Since this is not properly a
matrix-free implementation, we refer to this as a matrix-light approach.

The matrix-vector product is trivial to implement without explicitly forming
K̃CD∗ or K̃C∗D as the matrix-vector products are applied for each component ma-
trix sequentially. The application of the (approximate) diagonal inverse is somewhat

trickier. In the K̃CD∗ case, the diagonal of D
T
1 MDD1 is readily available, since this

matrix is explicitly formed, while the diagonal of MCD0M̃
−1
G D

T
0 MC is not. Likewise

in the K̃C∗D case, the diagonal of D
T
2 MSD2 is readily available, while the diagonal of

MDD1M̃
−1
C D

T
1 MD is not.

Approximating the diagonal of a matrix is a problem that has been studied in
several contexts [5, 18] and such general techniques can be easily applied for our
problems. These methods are usually based on the application of a number of matrix-
vector products to sample the diagonal during the algorithm setup phase, which adds
expense. We also propose an alternative approach for this particular system.

If we assume that material constants do not differ much in scale, the first and
second terms in either the K̃CD∗ or K̃C∗D matrix components should be of the same
scale. One term involves two derivatives and one mass matrix. The other involves
two derivatives, two mass matrices and the inverse of a third mass matrix. This
means that in the finite element case they should both be O(h−1). Approximating
the diagonal of the matrix we do not explicitly have with a constant multiple of the
one we do have works well for orthogonal meshes, even when they are stretched. For
non-orthogonal meshes, a slightly more complicated method is required.

In the K̃CD∗ case, we form the actual diagonal of the matrix MCD0M̃
−1
G D

T
0 MC

where MC is replaced by its diagonal. Rather than requiring four matrix-matrix
multiplies as the above equation would suggest, this can be done with only one matrix-
matrix multiply. The following MATLAB code illustrates this approach for both curl
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and div-conforming elements:

DC = diag
(
diag

(
D

T

1 MDD1

)
+ (abs(D0) ∗ diag(MG)) . ∗ (diag(MC).ˆ2)

)
; (4.6)

DD = diag
(
diag

(
D

T

2 MSD2

)
+ (abs(D1) ∗ diag(MC)) . ∗ (diag(MD).ˆ2)

)
; (4.7)

We demonstrate the appropriateness of this approach, even in the case of unstructured
meshes, in Section 5.2.

5. Numerical results. We consider three model problems for testing the LS-
FEM formulations and proposed solvers. Our first test problem involves solving (1.1)
and (1.2) on the orthogonal box [−1, 1]3 using uniform hexahedral elements, i.e., ele-
ments whose faces are squares. For simplicity we take Θ0 = 1 and Θ1 and Θ2 equal
to the identity. We use this test problem for both order of convergence studies as well
as solver scalability. In both cases, the mesh is uniformly refined from 103 to 803 and
all elements are affine. We refer to this problem as the orthogonal box problem.

The second model problem has the same geometry as the first, except that we set
material parameter Θ1 to a multiple of the identity with coefficient c. Inside of the
box [−0.5, 0.5]3, c is varied between 1e− 2 to 1e2, while the remainder of the domain
([−1, 1]3 \ [−0.5, 0.5]3) has c = 1. As before, we take Θ0 = 1 and Θ2 equal to the
identity. Here we uniformly refined the mesh from 103 to 803. We refer to this as the
“box-in-a-box” problem. Again, all elements in this setting are affine.

Our final model problem involves a distorted mesh with non-affine hexahedral
elements. Unstructured and semi-structured meshes often cause challenges for linear
solvers because the meshes can contain elements with poor aspect ratios or small
angles. Therefore, the main purpose of this problem is to test the performance of
the solvers described in Section 4. Additionally, we use this setting to illustrate
the convergence issues with curl and div-conforming elements that were mentioned in
Remark 3. We consider the following model distorted mesh shown in Figure 5.1. Note

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Fig. 5.1. 2D (x-y) projection of the 3D model distorted mesh problem at the coarsest grid
resolution.

that the center of the mesh is basically orthogonal, while the elements near the corners
have been seriously distorted. This mesh is created by distorting an orthogonal box
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Mesh Size
103 203 403 803

‖u− uh‖0 0.31318 0.13991 0.067749 0.033597
Order of Convergence 1.1625 1.0462 1.0119

‖∇ · u−∇ · uh‖0 2.3036 1.1575 0.57905 0.28945
Order of Convergence 0.9929 0.9993 1.0003

Table 5.1
Error and order of convergence for manufactured solution on box mesh using C1 .

where the coordinates are remapped as follows,

r ←
√

x2
0 + y2

0 ,

θ ← atan2(x0, y0),

[
x

y

]
←






[
x0

y0

]
if r <= 0.5



 r cos
(
θ + (r−.5)π

2

)

r sin
(
θ + (r−.5)π

2

)



 if r > 0.5






.

The z coordinate remains unchanged. We keep the mesh in the z-direction a factor
of 2.5 coarser than the mesh in the x and y directions in order to create additional
mesh anisotropy in the problem. The meshing and distortion is done automatically
using Pamgen, a part of the Trilinos library collection [22, 23]. We take Θ0 = 1 and
Θ1 and Θ2 equal to the identity and refer to this as the distorted mesh problem.

5.1. Order of convergence study. To test the order of convergence we solve
the orthogonal box and distorted mesh problems using manufactured solutions. In
the curl-compatible case, we assume an exact solution u given by

u =




exp(x + y + z)(y2 − 1)(z2 − 1)
exp(x + y + z)(x2 − 1)(z2 − 1)
exp(x + y + z)(x2 − 1)(y2 − 1)



 . (5.1)

This solution satisfies the homogeneous boundary conditions in (1.1). The right-hand
side functions, g and f from (1.1) are obtained by substituting the exact solution
in (5.1) into the differential equations. These functions are used to generate data
for the right-hand side of the discrete linear system. In the curl-conforming case the
right hand side vector, b, is formed from the terms (g,∇ × uh) + (f,∇∗ · uh). We
use integration by parts on the second term to remove the weak divergence of uh.
This introduces a boundary term, which depends on the boundary normal, n. As a
function of the curl-conforming basis, {ci}, components of the right-hand side vector
are then calculated as

bi =

∫

Ω

g · (∇× ci)dΩ−

∫

Ω

∇f · cidΩ +

∫

Γ

fci · ndΓ. (5.2)

For these test cases the lowest order Nédelec edge element, C1 is used. In Ta-
ble 5.1 results from the convergence study for the curl-compatible case on the affine
box grid are shown and first order-convergence, as expected from Corollary 3.3, is
seen.
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(a) (b)

Fig. 5.2. Slice through the center of the 40×40×16 distorted mesh in the (x-y) plane displaying
(a) approximate and (b) exact x-component of solution for the curl-conforming LSFEM.

Mesh Size
10× 10× 4 20× 20× 8 40× 40× 16

‖u− uh‖0 0.89131 0.420695 0.212596
Order of Convergence 1.0832 0.98466
‖∇ × u−∇× uh‖0 4.89925 2.73187 1.55896

Order of Convergence 0.84267 0.80930
Table 5.2

Error and order of convergence for manufactured solution on distorted mesh using C1 .

A convergence test was also performed for the non-affine distorted mesh using
the exact solution in (5.1). On the distorted mesh, this function does not satisfy
homogeneous boundary conditions and, therefore, boundary conditions of the form
u × n = ũ, where ũ is calculated from the exact solution, were applied. Figure 5.2
shows a slice through the 40 × 40 × 16 distorted mesh with the x-component of the
approximate and exact solutions. Convergence results are shown in Table 5.2. The
data in this table is consistent with the comments made in Remark 3. Specifically, we
see that the optimal order of convergence is preserved in the L2 norm but is reduced in
the H(curl) semi-norm, as it should for the lowest-order Nédelec space on non-affine
hexahedral elements.

Similar calculations were performed for the div-conforming case, where the exact
solution u is given by

u =




exp(y + z)(x2 − 1)
exp(x + z)(y2 − 1)
exp(x + y)(z2 − 1)



 . (5.3)

This function was chosen to satisfy the homogeneous boundary conditions given in
(1.2). The right-hand side terms are derived from this function in the usual manner by
substituting the exact solution into the differential equations. In the div-conforming
case the right-hand side vector is generated from (g,∇∗×uh)+(f,∇·uh). Integration
by parts is used here to remove the weak curl from the first term, which introduces a
boundary term. As a function of the components of the div-conforming basis, {di},
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Mesh Size
103 203 403 803

‖u− uh‖0 0.529424 0.265879 0.132593 0.066244
Order of Convergence 0.99365 1.0038 1.0011

‖∇ · u−∇ · uh‖0 1.76578 0.858779 0.428503 0.213946
Order of Convergence 1.0399 1.0030 1.0021

Table 5.3
Error and order of convergence for manufactured solution on box mesh using D1 .
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Fig. 5.3. Slice through the center of the 40×40×16 distorted mesh in the (x-y) plane displaying
(a) approximate and (b) exact x-component of solution for the div-conforming case.

the components of the right-hand side vector are calculated as

bi = −

∫

Ω

∇× g · didΩ +

∫

Γ

(g × di) · ndΓ +

∫

Ω

f∇ · didΩ. (5.4)

The lowest order Raviart-Thomas element, D1 was used for the div-conforming
calculations and first-order convergence on the affine box mesh is seen as predicted
from Corollary 3.5. The convergence results are shown in Table 5.3.

Another convergence test was performed for the non-affine distorted mesh using
the exact solution in (5.3) and D1 elements. As in the curl-conforming case, this
function does not satisfy homogeneous boundary conditions on the distorted mesh
and therefore the exact solution was used to calculate boundary values.

Figure 5.3 shows a slice through the 40 × 40 × 16 distorted mesh with the x-
component of the approximate and exact solutions. In the “eyeball” norm the two
solutions appear well-matched and very similar. However, the convergence results,
shown in Table 5.4, reveal that convergence in L2 is essentially lost, while the order of
the H(div)-seminorm error is significantly reduced. This behavior is in line with the
comments made in Remark 3 about div-conforming elements on non-affine hexahedral
grids. To avoid loss of convergence either tetrahedral elements or a higher-order basis
on hexahedral elements could be used.

5.2. Solver scalability. We consider five different variants of the solver de-
scribed in Section 4.2. All of these involve different methods of estimating the diagonal
of the K̃CD∗ or K̃C∗D matrix for Chebyshev smoothing. The first method, denoted
“Baseline” involves explicitly forming the “addon” matrix (MCD0M̃

−1
G D

T
0 MC in the
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Mesh Size
10× 10× 4 20× 20× 8 40× 40× 16

‖u− uh‖0 1.91489 1.48594 1.42005
Order of Convergence 0.36589 0.06543

‖∇ · u−∇ · uh‖0 4.60218 3.05206 2.07471
Order of Convergence 0.59253 0.55687

Table 5.4
Error and order of convergence for manufactured solution on distorted mesh using D1 .

K̃CD∗ case, or MDD1M̃
−1
C D

T
1 MD in the K̃C∗D case) in order to extract the diagonal.

This method is not tenable in practice, due to the expense, but establishes a minimum
baseline for the number of iterations. Barring the occasional stroke of luck, no other
method should perform better than this one.

The second method involves the proposed diagonal approximations detailed in
(4.6) and (4.7). They are denoted “Estimate (4.6)” and “Estimate (4.7),” respectively.
The performance of these methods ought to be close to that of the Baseline method,
but at significantly reduced expense.

The third method is denoted “Stiffness Only.” In the context of the eddy current
approximation to Maxwell’s equations, it has been theorized that adding a stabiliza-
tion term (e.g. MCD0M̃

−1
G D

T
0 MC in the curl-conforming case) is not necessary in the

positive definite case (4.6) [7]. We use this method to test to see if that hypothesis
applies to least-squares systems as well.

The fourth and fifth methods are implementations of “Diagonal Estimator” algo-
rithm described as the baseline for comparison in Section 2.1 of [5]. These variants
are referred to as “Random(10)” and “Random(15),” and respectively use 10 and 15
randomly generated vectors to approximate the diagonal of the matrix.

For all of the below problems, a single V-cycle of the aforementioned solvers is
accelerated with CG with a tolerance of 1e− 10. Two pre and post smoothing steps
of Chebyshev are run at each level of the V-cycle. We run at most 200 iterations of
each of the above solvers and any method that has not met the specified tolerance is
reported as having not converged. All of these experiments are run in MATLAB using
ML’s mlmex interface [21] as a sub-solver for the coarse vector Laplace problems.

5.2.1. Curl-conforming orthogonal box. We consider the five solvers de-
scribed in Section 5.2. These results are shown in Table 5.5. We first note that the
“Stiffness Only” method has severe convergence issues. This implies that the use of
the “addon” term (i.e. MCD0M̃

−1
G D

T
0 MC in the curl-conforming case) is necessary

for least-squares systems. This contrasts with previous results on the eddy current
Maxwell’s equations, where such a term was not necessary in the positive definite
case [7].

Secondly, we note that the baseline method has good convergence properties with
respect to mesh refinement. This relatively flat scaling (after the 103 mesh) suggests
that the baseline method is delivering some modicum of mesh independence.

Finally, we note that the diagonal estimate using (4.6) yields convergence results
practically identical to the baseline method of explicitly forming the system matrix.
This indicates that (4.6) is a practical, reliable estimate of the diagonal for the cost
of only one matrix-vector product. This contrasts with the results from the random
diagonal estimation, which needs 15 matrix-vector multiplies to perform near the level
of the random diagonal estimation.
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Mesh Size
Diagonal 10 20 40 80

Baseline 18 24 22 25
Estimate (4.6) 18 24 22 25
Stiffness Only 140 ∗ ∗ ∗
Random(10) 49 108 90 ∗
Random(15) 20 25 34 142

Table 5.5
Multigrid solver iterations for curl-conforming LSFEM on an orthogonal box of size 103 to 803

(∗ indicates that method did not converge in 200 iterations).

1e− 2 1e− 1 1e0
Diagonal 10 20 40 10 20 40 10 20 40

Baseline 46 70 83 20 29 33 18 24 22
Estimate (4.6) 48 71 84 20 29 33 18 24 22

Random(10) 135 ∗ ∗ 56 126 115 49 107 88
Random(15) 54 78 111 23 31 44 20 25 34

1e1 1e2
Diagonal 10 20 40 10 20 40

Baseline 21 30 31 43 68 78
Estimate (4.6) 21 30 32 43 69 78

Random(10) 55 131 109 125 ∗ ∗
Random(15) 22 32 41 49 85 98

Table 5.6
Multigrid solver iterations for curl-conforming LSFEM on an orthogonal box of size 103 to 803

(∗ indicates that method did not converge in 200 iterations).

5.2.2. Curl-conforming variable materials. Given the level of performance
of the “Stiffness Only” method in Section 5.2.1 we remove it from consideration for
the variable materials problem. Table 5.6 shows the convergence results with variable
Θ1. We note again that the method of (4.6) yields convergence results very similar
to the baseline method and substantially better than either of the random methods.

5.2.3. Curl-conforming distorted mesh. Table 5.7 details solver convergence
for uniform mesh refinement on the distorted mesh shown in Figure 5.1. We note that
while convergence does deteriorate with respect to mesh refinement (due to the poor
quality of the mesh), using the diagonal estimate of (4.6) yields convergence behavior
almost identical to that of explicitly forming the diagonal. We do not report results for
either the random or stiffness only cases. In these cases, the method fails to converge
within our budget of 200 iterations.

5.2.4. Div-conforming orthogonal box. Much as in Section 5.2.1, we con-
sider five solvers described in Section 5.2. These results are shown in Table 5.8.
First, we note that the “Stiffness Only” method does not converge to the specified
tolerance for any problem size. This implies that the use of the “addon” term (i.e.

MDD1M̃
−1
C D

T
1 MD) is necessary for rapid solution on div-conforming LSFEMs.

Second, we note that the baseline method has very good performance with re-
spect to mesh refinement. This suggests that convergence may bounded in a mesh-
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Mesh Size
Diagonal 20× 20× 8 40× 40× 16 80× 80× 32

Explicit 53 93 116
Estimate (4.6) 53 96 120

Table 5.7
Multigrid solver iterations for curl-conforming LSFEM on a distorted mesh size 20× 20× 8 to

80 × 80 × 32.

Mesh Size
Diagonal 10 20 40 80

Baseline 17 21 20 22
Estimate (4.7) 18 21 20 22
Stiffness Only ∗ ∗ ∗ ∗
Random(10) 20 99 ∗ ∗
Random(15) 18 32 172 70

Table 5.8
Multigrid solver iterations for div-conforming LSFEM on an orthogonal box of size 103 to 803

(∗ indicates that the method did not converge in 200 iterations).

independent fashion. Likewise, we note that the method using the diagonal estimate
of (4.7) is nearly identical to the baseline approach. This indicates that (4.7) is a prac-
tical, reliable estimate of the diagonal for the cost of only one matrix-vector product.
The performance of the random diagonal estimation methods is very poor even in the
15 vector case.

5.2.5. Div-conforming variable materials. Much as in the curl-conforming
case, the performance of the “Stiffness Only” method in Section 5.2.4 is very poor,
so we remove it from consideration for the variable materials problem. Table 5.9
shows the convergence results with variable Θ1. We note that except in the cases of
a small coefficient for Θ1 the method of (4.7) yields convergence results very similar
to baseline method. The random methods perform both quite poorly, especially for
coefficients that are less than one.

5.2.6. Div-conforming distorted mesh. Table 5.10 details solver convergence
for uniform mesh refinement on the distorted mesh shown in Figure 5.1. Much as in
the curl-conforming case, the convergence deteriorates with respect to mesh refinement
(due to the poor quality of the mesh). However using the diagonal estimate of (4.6)
yields convergence behavior almost identical to that of explicitly forming the diagonal.
As above, we have do not report results for either the random or stiffness only cases
as those methods fail to converge within our budget of 200 iterations.

6. Conclusions. A strategy for solving div-curl systems using least-squares
methods has been presented. The stability of the “partially” conforming discretization
has been proved and error estimates were derived. Numerical results show optimal
convergence of both the curl-conforming and div-conforming discretizations on the
regular box mesh. However, on the distorted mesh the optimal convergence is not
obtained for the lowest-order basis functions. Although the linear systems generated
from these discretizations involve non-sparse matrices, these matrices are symmetric
and positive definite and can be solved efficiently with our proposed AMG method.



Least-squares for div-curl systems 21

1e− 2 1e− 1 1e0
Diagonal 10 20 40 10 20 40 10 20 40

Baseline 75 114 142 25 38 47 16 19 19
Estimate (4.6) 92 151 191 25 39 47 16 19 19

Random(10) ∗ ∗ ∗ 46 ∗ ∗ 18 133 ∗
Random(15) ∗ ∗ ∗ 38 69 ∗ 16 21 25

1e1 1e2
Diagonal 10 20 40 10 20 40

Baseline 16 19 20 38 46 48
Estimate (4.6) 16 19 20 36 46 48

Random(10) 18 125 ∗ 43 ∗ ∗
Random(15) 16 21 25 38 46 52

Table 5.9
Multigrid solver iterations for div-conforming LSFEM on an orthogonal box of size 103 to 403,

with a coefficient, c, of Θ1 varied from 1e − 2 to 1e2 (∗ indicates that method did not converge in
200 iterations).

Mesh Size
Diagonal 20× 20× 8 40× 40× 16 80× 80× 32

Baseline 50 79 124
Estimate (4.7) 50 82 130

Table 5.10
Multigrid solver iterations for div-conforming LSFEM on a distorted mesh size 20 × 20 × 8 to

80 × 80 × 32.
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